exchangeable events - significado y definición. Qué es exchangeable events
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es exchangeable events - definición

SEQUENCE OF RANDOM VARIABLES SUCH THAT, FOR ANY FINITE PERMUTATION OF THE INDICES, THE JOINT PROBABILITY DISTRIBUTION OF THE PERMUTED SEQUENCE EQUALS THAT OF THE ORIGINAL
Exchangeable events; Interchangeable random variables; Exchangeability; Exchangeable sequence; Exchangeable random variable; Exchangeable matrix; Exchangeable correlation matrix

Exchangeable random variables         
In statistics, an exchangeable sequence of random variables (also sometimes interchangeable) is a sequence X1, X2, X3, ... (which may be finitely or infinitely long) whose joint probability distribution does not change when the positions in the sequence in which finitely many of them appear are altered.
Exchangeability         
·noun The quality or state of being exchangeable.
Exchangeable bond         
TYPE OF HYBRID SECURITY
Exchangeable debt
Exchangeable bond (or XB) is a type of hybrid security consisting of a straight bond and an embedded option to exchange the bond for the stock of a company other than the issuer (usually a subsidiary or company in which the issuer owns a stake) at some future date and under prescribed conditions. An exchangeable bond is different from a convertible bond.

Wikipedia

Exchangeable random variables

In statistics, an exchangeable sequence of random variables (also sometimes interchangeable) is a sequence X1X2X3, ... (which may be finitely or infinitely long) whose joint probability distribution does not change when the positions in the sequence in which finitely many of them appear are altered. Thus, for example the sequences

X 1 , X 2 , X 3 , X 4 , X 5 , X 6  and  X 3 , X 6 , X 1 , X 5 , X 2 , X 4 {\displaystyle X_{1},X_{2},X_{3},X_{4},X_{5},X_{6}\quad {\text{ and }}\quad X_{3},X_{6},X_{1},X_{5},X_{2},X_{4}}

both have the same joint probability distribution.

It is closely related to the use of independent and identically distributed random variables in statistical models. Exchangeable sequences of random variables arise in cases of simple random sampling.